Code Propagation in Wireless Sensor Networks

Sjoerd Langkemper

April 30, 2007

Abstract

Wireless sensor networks consist of many radio-
equipped nodes which are limited in resources
and power. After deployment, these nodes may
need reprogramming to fix bugs, add features or
make the nodes suitable for another task, among
others. Because it may be impractical to phys-
ically visit these nodes to reprogram them, sev-
eral methods have been proposed to reprogram
nodes using data sent over the network. This pa-
per gives an overview of methods to propagate
code through the network and to reduce the size
of this code.

1 Introduction

In a wireless sensor network (WSN), nodes can
communicate with each other through radio.
Since the radio has a limited range, not all nodes
may have a direct link to any other node. Fur-
thermore, nodes are often battery-operated and
therefore have limited power. WSNs can be used
to monitor for example animal habitat [Lev02],
enemy territory, water contamination and seismic
activity.

Nodes are typically programmed before de-
ployment. However, after deployment, it may be
useful to reprogram the nodes. Reprogramming
may be helpful for re-tasking a deployed network,
fixing bugs, introducing new features and tuning
the system parameters to the operating environ-
ment. [Bal06]

It is often impractical to visit the nodes physi-
cally in order to reprogram them [Lev02]. There-
fore, several methods have been proposed to re-
program nodes through the network, by send-
ing code over the network. This paper gives an
overview of these methods.

In section [2, we introduce a simple method to
reprogram nodes. In section [3| we describe a
method to securely program nodes which adds
authentication to the process. Some optimiza-
tions on transferring the whole code image are
described in section ] In section [5, we explain
why virtual machines are useful in this context.
We conclude with ideas for future work in section
lfland the conclusion in section [7]

2 Propagating code

In this paper, it is assumed that a special node
called the base station has the new code image. To
reprogram the network, this code image has to
be sent to all other nodes. Not all nodes may be
within radio range of the base station, so a method
is needed to let other nodes pass on data.

The whole code image may not fit in one net-
work packet. If this is the case, the code image has
to be split up at the base station and reassembled
at each node. Each node needs all parts of the
code for the reprogramming to work. These parts
of code are called segments in this paper.

In typical nodes, communication is expensive
in terms of energy. Sending a single bit can con-
sume the same energy as executing 1000 instruc-



tions. [Reij03, Sta03, Lev02]

In [Sta03], a protocol is proposed which uses
a ripple method to disseminate code. All source
nodes broadcasts code segments. Surrounding
nodes store these. Any node which has all seg-
ments, and thus a complete code image, becomes
a source node. According to [Sta03], this rip-
ple protocol reduces traffic 60-90%, compared to
flooding.

This has as advantage that when a segment is
lost, the source which has this segment is only
one hop away. Each node keeps track of which
segments it has received in a sliding window. Like
in TCP, the sliding window keeps track of the
segments which are currently being received, but
does not store information on all segments prior
to the beginning of the window, which are already
received. When a node detects that it has missed
a segment, it asks the sender to retransmit the
segment. [Sta03] does not describe what to do
when this source is not reachable, although they
propose to use a source-discovery mechanism.

3 Securely propagating code

Particularly in military applications, it may not be
desirable for anyone else than the owner to repro-
gram a WSN. Therefore, the base station should
authenticate itself and sign its code. However,
with the limited resources of nodes, public key
schemes should be used sparingly. Using a global
shared secret is not safe enough, because an at-
tacker may compromise a node and capture the
key.

[Jin06]] proposes to use a hash chain. Only the
tirst packet is signed with a private key. Each
packet then contains a code segment and the hash
of the next packet. Because the first packet is
signed, that segment and hash are correct. If the
second packet matches the hash, the second seg-
ment and the hash of the third packet are correct,
and so on.

This method successfully secures the code and

Hi=Hash(P+) Ho=Hash(P2) Hy=Hash(P;)
‘ 5\9”(H1)\ Hi ‘ | data, \ Hz‘ \ data; \ Ha\ --------

packet 0 packet 1 packet 2 packet n

Figure 1: Hash chain: each packet contains the
hash of the next packet.

verifies each packet instantly. This way, packets
do not have to be stored awaiting verification,
which an attacker can use to do a DoS attack.
However, the packets must arrive in order, some-
thing not needed by protocols as described in sec-
tion[2l

To solve this problem, [Jin06] changes the pro-
tocol to make use of a hash tree. With a hash tree,
each packet contains w hashes. Any of these w
packets can be verified, which in turn can verify
other packets. This way, a tree of packets is built
which verify each other. By sending packets by
traversing the tree breadth-first, the node has a
relatively long period to recover the lost packet.
This method does not allow the packets to arrive
in any order, but would work well when the pack-
ets are slightly out of order.

4 Only propagating updates

Since nodes are already programmed before
deployment, programming after deployment is
likely to consist of small changes. Fixing a bug
or adding a feature often leaves most of the code
intact. By only sending the changed code, com-
munication can be greatly reduced.

4.1 Diff-like approach

In [Reij03], a method is proposed to send only
the differences between two versions of the code.
Instead of transmitting code, an edit script is sent.
This edit script describes how the new version can
be made from the old version and the information
in the edit script. Such a method is already widely



OLD CODE NEW CODE
60K .
[ _Funch |8
FUNC g
FUNC h
FUNG g FUNC f
m
FUNC
k
| INSERTED
CODE
CALL k CALL m
0K 0K

Figure 2: Address shift: when a small change is
made, addresses throughout the whole program
change.

used in distributing source code on the Internet,
using the Unix diff and patch tools.

The authors observe that a small change in the
source code often means many changes in the bi-
nary code image, because addresses shift. When
the length of a function early on in the code is
changed, all addresses of succeeding functions
and data change. Any reference to these func-
tions and data must also change.

To optimize this, a special instruction is added
to the edit script which shifts all references in a
specific code block with a certain amount. This
way, address shifts can be compensated.

4.2 Loading modules

Some operating systems designed for nodes are
able to load and unload programs. These oper-

ating systems often have limited functionality in
their kernel and can load programs dynamically.

In the SOS operating system ([Han03]), it is pos-
sible to load modules, which are very much like
programs. The modules can interact with each
other with direct calls, kernel calls or message
passing. When a module initializes, it has to reg-
ister its public functions and their addresses with
the kernel. This way, when another module calls
one of these functions, the kernel knows where it
is.

Whereas the function calls in SOS are resolved
when the call is made, the Contiki operating sys-
tem ([Dun04]]) uses a relocation function which
updates programs to refer to the correct ad-
dresses.

In [Dun06], the authors observe that when dis-
tributing pre—linke modules, installation fails
when not all nodes have the same code image.
The new module references functions and data
outside the module. Normally, these references
are resolved by the relocation step, which is per-
formed at runtime. However, this does not work
when the node has a different code image than
which the module was linked with.

[Dun06] proposes to transmit dynamic mod-
ules and link these on the node. The authors im-
plemented a dynamic linker on top of the Contiki
operating system. They successfully linked pro-
grams on a node, showing that dynamic linking
is possible even on resource-limited systems.

5 Virtual machines

In order to reduce the size of the code image which
has to be transferred when an update occurs, vir-
tual machines can be used. Because a virtual ma-
chine can be relatively high-level, the bytecod
which is needed to program a virtual machine can

1Pre-linked programs are linked at compile-time.
ZBytecode is a binary representation of an executable pro-
gram designed to be executed by a virtual machine.



be orders of magnitude smaller than native code.
[Dun06, Lev02]

The biggest downside of virtual machines is
that they incur significant overhead. This means
that running a program on a virtual machine takes
more processing time and power than running
native code. An instruction on the Maté virtual
machine can take between 1.03 and 33.5 times as
long as in native code. Although the reduced
code size saves energy, the overhead of the virtual
machine consumes extra energy.

To reduce the overhead of the virtual ma-
chine, but keep the flexibility and small code size,
[Lev05] proposed application specific virtual ma-
chines. These virtual machines have big parts of
the application as virtual instructions, making the
program even smaller and more high-level, while
implementing most of the program in native code.
This makes the program both efficient and flexi-
ble.

In [Wir06], a more dynamic and numerical ap-
proach is taken to use both virtual machine and
native code. A network is equipped with a node
which can do just-in-time (JIT) compiling. Ordi-
nary nodes do not have the resources to perform
this task, so the JIT compilation service is imple-
mented by a more capable node. The JIT com-
pilation service will compile a specified method
into native code and broadcast it. The nodes use
distributed method profiling to identify any hot
methods, methods which take up most of the re-
sources. These methods are compiled by the JIT
compilation service and reloaded as native code.
This way, a good balance between bytecode and
native code is reached.

6 Future work

In this overview we described several methods
to decrease the size of the code image. In sec-
tion[d, we discussed a diff-like approach and sev-
eral module-based approached. However, these
could also be combined to only send changes in a

module [Han05]. Another optimization could be
to compress code using lossless data compression
[Dun06].

Several of the operating systems and virtual
machines discussed in this paper have room for
optimizations and feature enhancement. An op-
timization can be to reduce the power consump-
tion. A feature enhancement would be to imple-
ment a garbage collector. [Bal06]

Many of the proposed methods are untested in
large networks, as these are simply not available.
Power and profiling measurements in real situa-
tions can help to improve these methods.

Using both native code with interpreted byte-
code can offer both speed and flexibility. Future
research can focus on finding the optimal ratio
between native code and bytecode.

7 Conclusion

In wireless sensor networks, remote updating of
the nodes is essential. Because communication
is relatively costly in terms of power, many of
the approaches discussed in this paper focus on
reducing the size of the code. A typical approach
is to use a virtual machine or an operating system
to accomplish this.

References

[Wir06] Balancing Computation and Code Distri-
bution Costs: The Case for Hybrid Execution
in Sensor Networks, Ingwar Wirjawan, Joel
Koshy, Raju Pandey, Yann Ramin. 2006.

[Dun04] Contiki - a Lightweight and Flexible Op-
erating System for Tiny Networked Sensors,
Adam Dunkels, Bjorn Gronvall, Thiemo
Voigt. 2004.

[Han05] A Dynamic Operating System for Sensor
Nodes, Chih-Chieh Han, Ram Kumar, Roy
Shea, Eddie Kohler and Mani Srivastava.
2005.



[Lev02] Maté: A Tiny Virtual Machine for Sen-
sor Networks, Philip Levis and David Culler.
2002.

[Lev05] Active Sensor Networks, Philip Levis,
David Gay, and David Culler. 2005.

[Lev04] Trickle: A Self-Regulating Algorithm for
Code Propagation and Maintenance in Wire-
less Sensor Networks, Philip Levis, Neil Patel,
David Culler, and Scott Shenker. 2004.

[Reij03] Efficient Code Distribution in Wireless Sen-
sor Networks, Niels Reijers, Koen Langen-
doen. 2003.

[Sta03] A Remote Code Update Mechanism for Wire-
less Sensor Networks, Thanos Stathopoulos,
Tyler McHenry, John Heidemann, Deborah
Estrin. 2003.

[BalO6] Multi-level Software Reconfiguration for
Sensor Networks, Rahul Balani, Chih-Chieh
Han, Ram Kumar Rengaswamy, Ilias Tsigko-
giannis, Mani Srivastava. 2006.

[Dun06] Run-Time Dynamic Linking for Repro-
gramming Wireless Sensor Networks, Adam
Dunkels, Niclas Finne, Joakim Eriksson,
Thiemo Voigt. 2006.

[Jin06] Secure Code Distribution in Dynamically
Programmable Wireless Sensor Networks, Jing
Deng Richard Han Shivakant Mishra. 2006.



	Introduction
	Propagating code
	Securely propagating code
	Only propagating updates
	Diff-like approach
	Loading modules

	Virtual machines
	Future work
	Conclusion

